
Using Qualitative Representations and Analogical Mapping to Solve
Problems from a Spatial Intelligence Test

Andrew Lovett Kenneth Forbus Jeffrey Usher
{andrew-lovett, forbus, usher}@northwestern.edu

Qualitative Reasoning Group, Northwestern University
2133 Sheridan Road, Evanston, IL 60208 USA

Abstract

We show how qualitative spatial representations can be used
with the Structure-Mapping Engine (SME), a domain-general
model of analogy, to solve a set of problems from the Raven’s
Progressive Matrices test. SME is used in a two-stage
mapping process which we have previously shown to be
effective for solving geometric analogy problems. Each
problem is drawn in PowerPoint and input into sKEA, our
sketch understanding system. sKEA automatically computes
qualitative representations of the drawings, using a spatial
representation scheme motivated by research on human
perception. We demonstrate that the representations generated
by sKEA can be used with SME to solve the Raven’s
Progressive Matrices problems, without using any processes
specifically designed for the task.

1. Introduction
The processes of visual perception and spatial reasoning
present a number of interesting challenges to the fields of
Cognitive Science and Artificial Intelligence. The principle
questions are, how do we as humans construct appropriate
representations of our visual world and use these
representations to solve problems, and how can computers
be programmed to match this performance. We have argued
previously that we believe one key to spatial reasoning is
using qualitative representations (Forbus, Ferguson, &
Usher 2001). Qualitative representations capture an
appropriate level of abstraction for finding salient
similarities and differences across visual stimuli while
ignoring irrelevant dimensions, such as the exact length or
orientation of a particular edge. We have built a sketch
understanding system, sKEA (Forbus et al. 2004), which
constructs qualitative spatial representations of sketches
drawn by a user. These representations can be used as the
input to spatial reasoning tasks.

Our goal is to match human performance on spatial
reasoning tasks, in order to show that qualitative spatial
representations are both sufficient for solving the tasks and
sufficient for explaining human performance on the tasks.
For example, in (Tomai et al. 2005), we used sKEA
representations to solve Miller geometric analogy problems,
of a type used on intelligence tests. These are problems of
the form A : B :: C : ?, or “A is to B as C is to _?” We
solved these problems using SME (Falkenhainer, Forbus, &
Gentner 1989), a computational model of analogy based on
Gentner’s (1983) structure-mapping theory of analogy in
humans. We demonstrated that our domain-general model
of analogy, when used with the spatial information provided

by sKEA, was sufficient for solving a set of 20 analogy
problems used in Evans’ (1968) classic work.

While an important step, the problems used by Evans are
not calibrated in detail against human performance at
different developmental levels. By contrast, the Raven’s
Progressive Matrices (RPM) has been heavily studied and
used in evaluations in recent years. RPM is a nonverbal
intelligence test which measures individuals’ eductive
ability, i.e., their ability to find patterns in the apparent
chaos of a set of visual scenes (Raven et al. 1998). The
matrices come in two forms: 2x2 and 3x3 (see Figure 1; the
authors have made up these examples to protect the security
of the test). In each problem, individuals are presented with
a matrix in which the bottom right entry has been left blank.
Test-takers must pick the image that correctly finishes the
matrix from a set of 6 possible answers for the 2x2 matrices,
or a set of 8 possible answers for the 3x3 matrices.

Figure 1: Examples of a 2x2 and 3x3 matrix problem.

We are particularly interested in the Standard Progressive
Matrices (SPM) (Raven et al. 2000), which is divided into
five sections, each progressively harder than the last. The A
and B sections each contain 12 2x2 matrices, while the C,
D, and E sections each contain 12 3x3 matrices. Section A
involves simply filling in the missing part of an image.
Later sections require more abstract reasoning.

Carpenter et al. (1990) modeled the performance of
college students on the Advanced Progressive Matrices.
Their system was able to match the performance of the most
advanced students on these problems. However, their focus
was on how students organized knowledge and applied
problem-specific strategies. Among the shortcomings of
their study, they mentioned: (1) they hand-coded the stimuli,
rather than using an automatic perception system; (2) they
identified the necessary rules beforehand and hand-coded
them into the system, rather than having it discover the
rules; and (3) their model might not capture the techniques
and strategies used by younger students.

Our model addresses all three of these shortcomings. (1)
We use sKEA to automatically compute visual
representations. (2) We use only general processes to solve
the Raven’s problems; our system does not possess any
prior knowledge about particular patterns or rules. (3) We
are modeling performance by less advanced individuals;
specifically, we want to see if domain-general processes and
task-general spatial representations suffice for modeling
performance on sections B and C, two relatively easy
sections in the SPM.

We start by briefly reviewing SME and sKEA. The
spatial representations automatically constructed by sKEA
are discussed next, including some specifically motivated by
the RPM task. We then describe how SME is used in a two-
stage mapping process to solve these problems. Finally, we
describe the model’s performance and summarize some
related work.

2. The Structure Mapping Engine
Structure-mapping defines analogy and similarity in terms
of a comparison process operating over structured
representations, i.e., entities, attributes, and relations,
including higher-order relations between relations (Gentner
1983). A key bias affecting this process is systematicity,
i.e., mappings involving systems of relations, including
higher-order relations, are preferred by people. SME
implements this comparison process (Falkenhainer, et al.
1989). Given base and target descriptions, SME computes
one or more mappings. A mapping consists of
correspondences that describe how items (entities,
statements) in the base description align with items in the
target, candidate inferences representing conjectures
suggested by the correspondences, and a structural
evaluation score indicting the structural quality of the
match. Candidate inferences are based on non-aligned
structure in the base or target which is rooted in the
correspondences of the mapping.

3. Sketch Understanding
sKEA, the sketching Knowledge Entry Associate, is the first
open-domain sketch understanding system (Forbus et al.
2004). Most sketch understanding systems are limited to a
narrow domain and require extensive per-user training.
sKEA works differently, by splitting the perceptual load
with the user. Users manually segment a sketch into glyphs,

pieces of digital ink that represent the different objects in
the sketch. Users can label each glyph with one or more
conceptual categories from sKEA’s knowledge base. sKEA
automatically computes various qualitative spatial relations
between the glyphs in the sketch, including relative position
& size, and the RCC8 set of topological relations (Cohn
1996). Sketches can be segmented into layers. Relations are
only automatically computed between glyphs on the same
layer. sKEA combines the conceptual knowledge provided
by the user with the automatically computed spatial
knowledge to produce a qualitative, structural representation
of a sketch.

In cases where complex, precise spatial arrangements are
required, drawing by hand can be too difficult. Moreover,
certain types of figures simply cannot be sketched. For
example, consider the solid black squares in Figure 1.
While the four sides of a square can be sketched, there is no
good way to sketch a solidly black object. Consequently,
we have added a second method for adding digital ink to
sKEA. Users can copy lines and polygons drawn in
Microsoft applications such as PowerPoint and paste them
into sKEA. sKEA interprets the Windows Metafile format,
which consists of a set of draw commands, to create either
lines or polygons in sKEA’s digital ink format.

4. Spatial Representation
One of our primarily goals is to develop a qualitative spatial
representation scheme that is powerful and flexible enough
to match human performance in a variety of spatial
reasoning tasks, provided it is paired with an appropriate
spatial reasoning system. We see each task as an
opportunity to evaluate our current representation scheme
and, when necessary, add additional terms to our spatial
vocabulary to meet the needs of the task. In this section, we
summarize the representation scheme used to solve the
RPM problems. While most components had been used for
previous tasks, we were required to add some new features
to the representation scheme, most notably a texture
component. In the future, we hope to show that these new
features, rather than being solely required for this task, will
play useful roles in performing other tasks.

Because we are interested in explaining human
performance, our spatial representation scheme is not
simply an arbitrary collection of terms which have proven
useful in reasoning tasks. Rather, the components are
motivated by theories of human perception. Psychological
evidence supporting the components below is described
when available.

Basic Elements
What objects should make up the basic elements in a
representation of visual structure? One possibility would be
to create an entity for every edge in an image. However,
Treisman and Patterson (1984) found evidence that humans
detect closure at an early, pre-attentive stage in the visual
pipeline, allowing them to quickly reason about triangles at
the attentive level without, apparently, having to resort to

analyzing the triangles’ individual edges. Consequently, we
use closed shapes as entities in our spatial representation.
Edges that do not form a closed shape are treated as separate
entities. For example, a right triangle is represented as a
single entity, while two edges forming a right angle are
represented as two distinct entities.

We also include two basic attributes of closed shapes:
their fill color, for solidly colored shapes, and their outline
color. Ordinarily, every shape will have an outline color; a
solidly black square will also have the outline color black.

Spatial Relations
Our representation contains two basic positional relations
between elements: left-of and above. sKEA computes these
relationships under certain conditions for pairs of glyphs
that are disconnected and adjacent, i.e., there is no third
glyph between them. Adjacency is determined by using a
Voronoi diagram (Forbus et al. 2003). Positional relations
are only asserted when one glyph is directly above or
directly beside an adjacent glyph; mixtures of positional
relations between a pair of glyphs are not allowed.

When one object is spatially located within another, a
different set of relationships must be applied. In studying
participants’ memories for visual scenes in which a dot was
located somewhere inside a circle, Huttenlocher et al.
(1991) found that the memory contained two components.
One was a quantitative component consisting of the dot’s
actual location inside the circle. The second was a
qualitative component which encoded which of the circle’s
four quadrants the dot had been located in. When asked to
recreate the scenes, participants tended to allow their
memory of the qualitative component to bias their memory
of the exact location, moving the dot closer to the center of
the quadrant in which it had been located. We interpret
Huttenlocher et al.’s results (1991) as indicating that closed
shapes are capable of setting up a frame of reference. This
frame consists of x- and y-axes running through the center
of the shape. For simplicity, we currently assume that these
axes align with the axes of the global reference frame,
although this is not always true. When one visual object is
located inside a closed shape, we first assert a topological
relation stating that one glyph is inside the other. Then, the
interior glyph’s position relative to the axes of the exterior
glyph’s frame of reference is computed and encoded.

Shape Comparison
Clearly people are capable of distinguishing between
different shapes based on detailed properties even when
they are the same general type (e.g., two triangles). So
while we treat closed shapes as entities, properties of their
edges are still used in comparisons. People can compare
novel complex shapes that are presented at different
orientations. For tasks like the RPM, detecting what
differences (rotation, reflection, and/or scale change) there
are between two instances of the same shape is crucial.

Previous work on mental rotation provides valuable
constraints. Shepard and Metzler (1971) demonstrated that

when participants were shown drawings of arbitrary shapes
and asked to determine whether one shape was a rotation of
the other, the time required to identify the shapes as
identical was proportional to the angle between them. This
result seems to suggest that shape representations are
orientation-specific, and that participants cannot compare
two shapes to determine whether they are the same without
first rotating their representation of one of the shapes to
align it with the other. However, in the many studies that
followed the original (see Shepard and Cooper 1982, for an
overview), one fairly consistent finding was that, whether
the shapes being compared were 2D or 3D, the time
required tended to be proportionate to the degrees of
rotation along the shortest possible axis of rotation. How
could participants know the shortest axis of rotation before
they knew whether the shapes were the same? Shepard and
Cooper (1982) suggested that, before mental rotating one of
the representations, people identify corresponding parts on
the two images and these corresponding parts guide the
rotation. If this is true, then people must have access to
some orientation-invariant representation that can be used to
identify corresponding parts.

Thus, we propose that people use two representations for
objects being compared, whether the objects are simple
closed shapes or complex, three-dimensional structures. The
first representation is a qualitative, rotation-invariant
representation that describes how an object’s parts relate to
each other. If the object is a closed, 2D shape, this
representation describes the shape’s edges. It includes
relations which specify the types of angles that exist
between connected edges, as well as the relative lengths and
orientations of the edges.

When comparing two shapes, we claim that people begin
by using a structure-mapping process to align the shapes’
qualitative representations, identifying the corresponding
edges in each shape. Once corresponding edges have been
identified, people cannot immediately conclude that the
shapes are the same. The qualitative representations are
relatively sparse, lacking specific information about the
length and orientation of each edge. To determine that the
shapes are identical, their quantitative representations must
be compared. These representations are orientation-specific,
so they cannot be compared without first mental rotating
one of them to line up its edges with the corresponding
edges in the other representation. Because corresponding
edges are known, people can quickly compare one pair of
corresponding edges to determine the shortest axis of
rotation between them. They must then rotate all the other
edges together along this axis, using some mental process
that can take linear time.

Implementation Our shape comparison process starts by
decomposing the shape into its component edges by
identifying significant discontinuities in the curvature of its
outline. We then build a qualitative representation where
each component edge becomes an entity. We compare the
qualitative representations using SME. The correspondences

for the mappings it finds are used to compute the
quantitative difference. That is, we iterate over every pair of
corresponding edges to ascertain whether the rotational
difference between every pair is the same. This comparison
process is an approximation of the mental rotation process
described above, since we compare each pair of edges in
isolation, rather than rotating the entire set of edges together
over a common axis. When SME returns multiple mappings
(representing multiple possible rotations between the
shapes), we pick the shortest possible rotation.

Our comparison process can detect reflections and scale
changes as well as rotations. We detect reflections over the
x- or y-axis by reversing the order of edges in one of the
representations, finding the corresponding edges, and
checking whether a reflection over the appropriate axis
would explain the orientation for every pair of
corresponding edges. We also check whether one shape is
longer or taller than the other along the x and y axes. This
size comparison is facilitated by the previous orientation
comparison because, if one shape has been rotated about 90
or 270 degrees, we know to switch that shape’s x and y
dimensions before comparing their sizes.

Encoding The choice of when to compare shapes and how
to encode the results of that comparison is somewhat task-
specific. Given an RPM problem, our system begins by
comparing shapes across all figures in the problem, creating
a shape equivalency class for each shape. Membership in
this equivalence class is used as an attribute that is encoded
for every member of that class. For example, all rectangles
in a sketched problem would be placed in the same shape
class. (The attribute used is arbitrary, having no meaning
outside that problem.) This enables objects to be aligned
based on having similar shapes.

Transformations (i.e., rotations, reflections, and scale
changes) are computed when images are compared. In
RPM, this includes comparing two entries in the matrix or
an entry with a possible answer. When comparing two
images, the system begins by iterating over all shape
equivalency classes. For each class, it selects the first
instance of that class it finds and uses it as a reference
shape. It compares all other instances of the class in both
images to the reference shape to identify any
transformations. All transformations are included in the
representation of the appropriate image as an attribute of
that object. This process is performed on edges which are
stand-alone entities, as well as closed shapes. Firstly, all
such edges are assigned to one of the following shape
classes: CurvedEdge and StraightEdge. Then, one straight
edge is chosen as a reference, and all other straight edges
are compared to its orientation and length.

Textures
Several RPM problems require distinguishing textures, so
we implemented a rudimentary representation of textures in
our system. This is the least psychologically constrained
component of our model. Textures are detected by looking

for parallel lines that are not part of a closed shape. When
enough such lines are found, they are grouped together to
form a texture patch. The outline of a texture patch is the
total area covered by the set of parallel lines. This outline is
scrutinized to see if there is a closed shape whose outline
matches it. If such a shape is found, it is added to the
texture patch to create a border for it; otherwise the patch is
marked as a closed shape without a border. Texture patches
can play the same roles as any other closed shape in the
spatial relationships described above.

Encoding In RPM problems, there are cases where two
shapes should align simply because they both possess a
texture, and other cases where two shapes should align
specifically because they possess the same texture, i.e., the
lines that make up their textures are parallel. We captured
these distinctions by including two attributes for any closed
shape possessing a texture. The first is the TexturedObject
attribute, assigned to all shapes with a texture. The second
attribute is a texture class attribute, similar to the shape class
attribute described above. That is, for a given RPM
problem, all shapes possessing textures with parallel lines
are placed into a texture equivalency class and assigned an
arbitrary texture name for that class. Thus, in a comparison
between images, any two textured shapes will share at least
one common attribute, but two shapes with the same texture
will share two common attributes.

5. The Two-Stage Mapping Process
We use a variation of the two-stage mapping process from
(Tomai et al. 2005) to solve RPM problems. We first
describe the process for 2x2 problems and then show how it
is generalized to solve the more complex 3x3 problems.

Solving 2x2 Matrices
Recall that geometric analogy problems take the form A : B
:: C : ?. This form can easily be applied to a 2x2 Raven’s
matrix by focusing on either the rows or columns. For
example, consider the columns in the 2x2 matrix in Figure
1. We could solve the problem posed by this matrix by
asking “The top-left entry is to the bottom-left entry as the
top-right entry is to _?”. By posing the question in this way,
we are ignoring some of the information provided in the
matrix, specifically the relationship between the two entries
in the top row. However, one of our key insights about both
the 2x2 matrix problems and the 3x3 matrix problems is that
they include a great deal of redundant information. Much of
the time, these problems can be solved while ignoring some,
or even most of the information provided in the matrices.

Our strategy is to run two stages of comparisons (see
Figure 2). The first stage compares individual entries in the
matrix. SME is used to compare the top-left and bottom-left
entries in the matrix. Its mapping contains candidate
inferences for expressions in the base that fail to align with
the target and reverse candidate inferences for expressions

SME

SME

SME

SME

SME

∆ (A,B)

∆ (C,1) SME Answer 1

∆ (C,2)

∆ (C,3)

∆ (C,4)

SME

SME

SME

A B

C

Answer 2

Answer 3

Answer 4

Problem: Solve for D

D

Possible Answers:

Figure 2: The Two-Stage Structure-Mapping process, using rows to solve a problem

in the target that fail to align with the base. In the current
example, it produces one candidate inference saying that the
dot is in the upper half of the square and one reverse
candidate inference saying that the dot is in the lower half of
the square. These inferences are used to construct a new
representation, a representation of the differences between
the two entries in the sketch. We refer to sets of differences
as ∆(e1,e2), where e1, e2 are matrix entries or possible
answers. Similarly, we use SME to compare the upper-right
entry in the matrix to each of the six possible answers. Each
of these comparisons also produces a ∆.

The second stage mapping process uses SME to compare
the ∆s found in the first stage. Thus ∆(upper-left, lower-left)
is compared to the ∆(upper-right, answer) for each of the
six possible answers. The correct answer should be the one
whose ∆ is most similar to ∆(upper-left, lower-left).

Scoring the similarity of ∆s requires taking into account
both those elements that align and those that fail to align. In
our example, the correct answer would be a square with a
dot located in its bottom right corner. Thus, both the ∆s
would involve a dot being in the upper half of the square
versus the lower half. An answer that contained additional
differences, e.g. where the dot also differed in its size or
shape, would be less correct. An answer that contained
fewer differences, such as the dot being in the same
location, would also be less correct. Consequently, we
measure similarity by calculating both the percentage of
expressions in the base case (the differences between two

matrix entries) that align with the target case and the
percentage of expressions in the target case (the differences
between a matrix entry and a possible answer) that align
with the base case. We use the average of these two
percentages as our similarity measure.

The entire process described above can also be computed
based on the rows of the matrix. Because of redundancy,
scoring the answers based on either rows or columns is
usually sufficient. However, to ensure maximum accuracy,
the system picks an answer based on the average of the
scores computed based on rows and columns.

Solving 3x3 Matrices
It may initially seem that the two-stage mapping process
described above is insufficient for solving 3x3 matrices.
After all, the 3x3 matrices involve understanding a row of
three entries, so a system based on comparing only pairs of
entries should be unable to solve it. However, as noted
above, Raven’s matrices contain a high degree of
redundancy. We have found that 3x3 problems can be
solved by the same two-stage mapping process.

 We solve 3x3 matrices by dividing them into four
separate geometric analogy problems. As before, each of
these problems involves finding differences between two
matrix entries and comparing them to the differences
between one matrix entry and each of the possible answers.
The problems can be formulated as follows:

1) Row: middle : middle-right :: bottom-middle : ?
2) Column: middle : bottom-middle :: middle-right : ?
3) Row-Progressive: bottom-left : bottom-middle ::
bottom-middle : ?
4) Column-Progressive: top-right : middle-right :: middle-
right : ?

The first two questions are identical to the two used in the
2x2 matrix. That is, they ignore the first entry in their
respective rows or columns and consider only the
transformation between the second and third entries. The
last two questions focus on a single row or column. They
look at the change between the first and second entries and
compare that to the changes between the second entry and
the eight possible answers.

We have concluded that all of the problems in section C
of the RPM can be solved by asking one of the four
questions given above. Many of them can be solved by
asking more than one. For example, our example 3x3 matrix
in Figure 1 could actually be solved by asking any of these
questions. However, most problems are not quite as easy as
this one. Often, the correct answer will actually receive a
poor score using the Row-Progressive and Column-
Progressive questions. Therefore, it does not make sense to
score each answer based on its average score across the
four. Instead, we take the maximum score across the
questions, assuming that the correct answer should receive a
perfect or near-perfect score on at least one of the questions.

6. Performance on the SPM
Because the problems in the Standard Progressive Matrices
are precisely rendered, we drew the figures in PowerPoint
and pasted them into sKEA. The figures in each entry of the
matrices were pasted into separate layers, and the layers
were named so that sKEA could easily retrieve the set of
glyphs and relations for each entry in the matrix. Each
answer was also given its own layer.

We followed the normal sKEA strategy of relying on the
user to segment a sketch into shapes. Each of the closed
shapes was drawn in PowerPoint as a separate polygon.
Lines that were not part of a closed shape were each drawn
separately. Thus, when they were pasted into sKEA, they
had already been segmented into the appropriate entities.
sKEA was still required to segment the closed shapes into
edges, so that they could be compared to the other shapes,
but because PowerPoint had been used to draw perfectly
straight lines, this task was relatively easy. sKEA’s only
other task before building its representations was to group
parallel lines together to form textured closed shapes.

Note that we do not consider the problem of segmenting a
scene into objects to be a trivial part of visual processing. In
fact, we have previously explored automatic methods for
decomposing the ink in a single glyph into edges and closed
shapes (Lovett et al. 2007). However, for the present study,
we are focusing on other perception problems.

Results
Our system was tested on the 12 problems in section B and
12 problems in section C of the SPM. Chance performance
would be 2 correct answers in section B and 1.5 correct
answers in section C. Our system correctly answered all 12
problems in section B, and 10 out of 12 problems in section
C. Using the norms available on the SPM, we can compare
our system’s performance to human test-takers. According
to the 1979 norms found in Table SPM2 (Raven et al.,
2000), subjects who scored a perfect score on section B
generally scored 52 or higher on the overall test (out of a
total score of 60). Subjects who scored a 10 on section C
generally scored between 49 and 52. This suggests that,
within those sections, our system is performing at the level
of test-takers who scored around 52 on the overall test,
though we are not claiming our system could score as high
on the other sections. According to tables SPM 9 and SPM
10 (Raven et al., 2000), a score of 52 is in the 50th percentile
for individuals from the United States between the ages of
18 and 45. Thus, our system’s performance on sections B
and C appears to match the performance of the average
American adult.

Discussion
While our system’s performance was similar to the
performance of typical adults on the SPM, the two problems
that it missed were not the most difficult problems in section
C, by human standards. The problems were from the middle
third of the section, whereas the test is designed to steadily
increase in difficulty throughout each section (Raven et al.,
2000). Thus, we believe the mistakes made by the system
are based on limitations in our spatial representation
scheme. By considering the cause of these mistakes, we can
gain insights into how the representation scheme can be
improved to better model human perception.

The first mistake involves a single closed shape that
differs in number of parts between entries. Unfortunately,
our current shape comparison algorithm does not handle
partial shape matches: it only identifies shapes with the
exact same number of edges at approximately the same
relative orientations. In the future we plan to use a more
forgiving comparison algorithm, which can align some of
the edges in two shapes and, based on that alignment,
identify differences such as the addition or removal of other
edges. The other mistake involves textures; here, the general
TexturedObject attribute playes a part in misleading the
system into choosing the incorrect answer. This result
indicates that the system’s simplified texture component
needs to be refined.

7. Related Work
Ferguson’s (Ferguson and Forbus 1999) GeoRep
constructed qualitative representations of line drawings. As
with our own system, these representations could be used to
compare two drawings; they were also used to compare a
drawing to itself to look for symmetry. Museros and Escrig
(2004) built a system that made qualitative representations

for closed shapes and could be used to compare two such
shapes. We believe our system is the first to combine shape
comparison with comparing full drawings to solve a
complex task.

Other current models of analogical matching include
Mitchell’s (1993) Copycat program and French’s (1995)
TableTop. However, these systems were designed primarily
to work in a single domain, letter-strings for Copycat and
table settings for TableTop. SME, in contrast, works on a
general vocabulary that allows it to be used in variety of
different domains (Forbus et al. 1997). LISA (Hummel &
Holoyak 1997) is a general model of analogy, but to our
knowledge it has not been used with automatically
generated representations, and could not process
representations of the size needed to handle this task.

8. Conclusion
This simulation provides evidence for two important points.
First, it demonstrates that our spatial representation scheme
encodes sufficient information for solving 22 out of 24 SPM
problems that constitute two sections of the entire exam.
This, along with independent evidence motivating them,
suggests that our representations capture some important
properties of human visual representations. Most aspects of
these representations have been used in prior simulations
(e.g., Tomai et al. 2005), with only two (frames of
references inside objects and texture patches) added for this
simulation. While further development is needed, especially
in texture patches, this result suggests that the
representations are on the right track. Second, we have
shown that SME, in a two-stage mapping process, can be
used to solve easy to mid-level SPM problems. No special-
purpose mechanisms are required, lending support to the
claim that SME models general processes of structural
alignment in human cognition.

While our simulation overcomes the three limitations of
the Carpenter et al (1990) model, it has a complementary
limitation: it is not clear that our model can explain the
strategies used by more skilled individuals on more
advanced problems. Modeling performance on the advanced
problems would have the dual advantages of demonstrating
the generalizability of our model and allowing us to
determine whether the model can accurately predict human
errors, since humans make considerably more mistakes on
these problems. We believe it may be possible to
approximate the task-specific problem-solving strategies
laid out by Carpenter using general analogical processes,
although additional comparisons and mapping stages will be
needed to deal with the more abstract spatial relationships.
In the future, we plan to test out this approach.

Acknowledgments
This work was supported by NSF SLC Grant SBE-0541957,
the Spatial Intelligence and Learning Center (SILC).

References

Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one

intelligence test measures: A theoretical account of the
processing in the Raven Progressive Matrices test.
Psychological Review, 97, 404-431.

Cohn, A. (1996). Calculi for qualitative spatial reasoning. In
J. Calmet, J. A. Campbell, and J. Pfalzgraf (Eds.),
Artificial Intelligence and Symbolic Mathematical
Computation, LNCS 1138. Springer Verlag, 124-143.

Evans, T. (1968). A program for the solution of a class of
geometric-analogy intelligence-test questions. In M.
Minsky (Ed.), Semantic Information Processing.
Cambridge, MA: MIT Press.

Falkenhainer, B., Forbus, K. and Gentner, D. (1986). The
Structure-Mapping Engine. Proceedings of the Fifth
National Conference on Artificial Intelligence (pp. 272-
277). San Francisco, CA: Morgan Kaufmann.

Ferguson, R. W., and Forbus, K. D. (1999). GeoRep: A
flexible tool for spatial representations of line drawings.
In Proceedings of the 13th International Workshop on
Qualitative Reasoning (QR’99), 84-91. Loch Awe,
Scotland.

Forbus, K., Ferguson, R., and Usher, J. (2001). Towards a
computational model of sketching. Proceedings of the 6th
International Conference on Intelligent User Interfaces
(IUI’01). Santa Fe, NM.

Forbus, K., Gentner, D., Markman, A. and Ferguson, R.
(1997). Analogy just looks like high-level perception:
Why a domain-general approach to analogical mapping is
right. Journal of Experimental and Theoretical Artificial
Intelligence (JETI), 4, 185-211.

Forbus, K., Lockwood, K., Klenk, M., Tomai, E., and
Usher, J. (2004). Open-domain sketch understanding:
The nuSketch approach. In AAAI Fall Symposium on
Making Pen-based Interaction Intelligent and Natural.
Washington, DC.

Forbus, K., Tomai, E., and Usher, J. (2003). Qualitative
spatial reasoning for visual grouping in sketches. In
Proceedings of the 17th International Workshop on
Qualitative Reasoning. Brasilia, Brazil.

French, R. (1995). The subtlety of sameness. Cambridge,
MA: MIT Press.

Gentner, D. (1983). Structure-mapping: A theoretical
framework for analogy. Cognitive Science, 7, 155-170.

Hummel, J. E., & Holyoak, K. J. (1997). Distributed
representations of structure: A theory of analogical access
and mapping. Psychological Review, 104, 427-466.

Huttenlocher, J., Hedges, L. V., and Duncan, S. (1991).
Categories and particulars: Prototype effects in estimating
spatial location. Psychological Review, 98(3), 352-376.

Lovett, A., Dehghani, M., and Forbus, K. (2007).
Incremental Learning of Perceptual Categories for Open-
Domain Sketch Recognition. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence.
Hyderabad, India.

Mitchell, M. (1993). Analogy-making as perception: A
computer model. Cambridge, MA: MIT Press.

Museros, L., & Escrig, M. T. 2004. A qualitative theory for
shape representations and matching. In Proceedings of the
18th International Workshop on Qualitative Reasoning
(QR’04). Evanston, IL.

Raven, J., Raven, J. C., and Court, J. H. (1998). Manual for
the Raven’s Progressive Matrices and Vocabulary Scales.
Section 1: General Overview. Oxford: OPP Limited.

Raven, J., Raven, J. C., and Court, J. H. (2000). Manual for
the Raven’s Progressive Matrices and Vocabulary Scales.
Section 3: The Standard Progressive Matrices. Oxford:
OPP Limited.

Shepard, R. N., & Cooper, L. A. (1982). Mental images and
their transformations. Cambridge: MIT Press.

Shepard, R. N., & Metzler, J. (1971). Mental rotation of
three-dimensional objects. Science, 171, 701-703.

Tomai, E., Lovett, A., Forbus, K., and Usher, J. (2005). A
structure mapping model for solving geometric analogy
problems. In Proceedings of the 27th Annual Conference
of the Cognitive Science Society, Stresa, Italy, 2190-2195.

Treisman, A., and Paterson, P. (1984). Emergent features,
attention, and object perception. Journal of Experimental
Psychology: Human Perception and Performance, 10(1),
12-31.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

