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Abstract 

We show how qualitative spatial representations can be used 
with the Structure-Mapping Engine (SME), a domain-general 
model of analogy, to solve a set of problems from the Raven’s 
Progressive Matrices test. SME is used in a two-stage 
mapping process which we have previously shown to be 
effective for solving geometric analogy problems. Each 
problem is drawn in PowerPoint and input into sKEA, our 
sketch understanding system. sKEA automatically computes 
qualitative representations of the drawings, using a spatial 
representation scheme motivated by research on human 
perception. We demonstrate that the representations generated 
by sKEA can be used with SME to solve the Raven’s 
Progressive Matrices problems, without using any processes 
specifically designed for the task. 

1. Introduction 
The processes of visual perception and spatial reasoning 
present a number of interesting challenges to the fields of 
Cognitive Science and Artificial Intelligence. The principle 
questions are, how do we as humans construct appropriate 
representations of our visual world and use these 
representations to solve problems, and how can computers 
be programmed to match this performance. We have argued 
previously that we believe one key to spatial reasoning is 
using qualitative representations (Forbus, Ferguson, & 
Usher 2001). Qualitative representations capture an 
appropriate level of abstraction for finding salient 
similarities and differences across visual stimuli while 
ignoring irrelevant dimensions, such as the exact length or 
orientation of a particular edge. We have built a sketch 
understanding system, sKEA (Forbus et al. 2004), which 
constructs qualitative spatial representations of sketches 
drawn by a user. These representations can be used as the 
input to spatial reasoning tasks. 

Our goal is to match human performance on spatial 
reasoning tasks, in order to show that qualitative spatial 
representations are both sufficient for solving the tasks and 
sufficient for explaining human performance on the tasks. 
For example, in (Tomai et al. 2005), we used sKEA 
representations to solve Miller geometric analogy problems, 
of a type used on intelligence tests. These are problems of 
the form A : B :: C : ?, or “A is to B as C is to _?” We 
solved these problems using SME (Falkenhainer, Forbus, & 
Gentner 1989), a computational model of analogy based on 
Gentner’s (1983) structure-mapping theory of analogy in 
humans. We demonstrated that our domain-general model 
of analogy, when used with the spatial information provided 

by sKEA, was sufficient for solving a set of 20 analogy 
problems used in Evans’ (1968) classic work. 

While an important step, the problems used by Evans are 
not calibrated in detail against human performance at 
different developmental levels. By contrast, the Raven’s 
Progressive Matrices (RPM) has been heavily studied and 
used in evaluations in recent years. RPM is a nonverbal 
intelligence test which measures individuals’ eductive 
ability, i.e., their ability to find patterns in the apparent 
chaos of a set of visual scenes (Raven et al. 1998).  The 
matrices come in two forms: 2x2 and 3x3 (see Figure 1; the 
authors have made up these examples to protect the security 
of the test). In each problem, individuals are presented with 
a matrix in which the bottom right entry has been left blank. 
Test-takers must pick the image that correctly finishes the 
matrix from a set of 6 possible answers for the 2x2 matrices, 
or a set of 8 possible answers for the 3x3 matrices. 

 

   
  
 
 
 

    
 
 
 

Figure 1: Examples of a 2x2 and 3x3 matrix problem. 
 

We are particularly interested in the Standard Progressive 
Matrices (SPM) (Raven et al. 2000), which is divided into 
five sections, each progressively harder than the last.  The A 
and B sections each contain 12 2x2 matrices, while the C, 
D, and E sections each contain 12 3x3 matrices.  Section A 
involves simply filling in the missing part of an image.  
Later sections require more abstract reasoning.   



Carpenter et al. (1990) modeled the performance of 
college students on the Advanced Progressive Matrices.  
Their system was able to match the performance of the most 
advanced students on these problems.  However, their focus 
was on how students organized knowledge and applied 
problem-specific strategies. Among the shortcomings of 
their study, they mentioned: (1) they hand-coded the stimuli, 
rather than using an automatic perception system; (2) they 
identified the necessary rules beforehand and hand-coded 
them into the system, rather than having it discover the 
rules; and (3) their model might not capture the techniques 
and strategies used by younger students. 

Our model addresses all three of these shortcomings.  (1) 
We use sKEA to automatically compute visual 
representations. (2) We use only general processes to solve 
the Raven’s problems; our system does not possess any 
prior knowledge about particular patterns or rules. (3) We 
are modeling performance by less advanced individuals; 
specifically, we want to see if domain-general processes and 
task-general spatial representations suffice for modeling 
performance on sections B and C, two relatively easy 
sections in the SPM. 

We start by briefly reviewing SME and sKEA.  The 
spatial representations automatically constructed by sKEA 
are discussed next, including some specifically motivated by 
the RPM task.  We then describe how SME is used in a two-
stage mapping process to solve these problems.  Finally, we 
describe the model’s performance and summarize some 
related work. 

2. The Structure Mapping Engine 
Structure-mapping defines analogy and similarity in terms 
of a comparison process operating over structured 
representations, i.e., entities, attributes, and relations, 
including higher-order relations between relations (Gentner 
1983).  A key bias affecting this process is systematicity, 
i.e., mappings involving systems of relations, including 
higher-order relations, are preferred by people. SME 
implements this comparison process (Falkenhainer, et al. 
1989).  Given base and target descriptions, SME computes 
one or more mappings.  A mapping consists of 
correspondences that describe how items (entities, 
statements) in the base description align with items in the 
target, candidate inferences representing conjectures 
suggested by the correspondences, and a structural 
evaluation score indicting the structural quality of the 
match.  Candidate inferences are based on non-aligned 
structure in the base or target which is rooted in the 
correspondences of the mapping.   

3. Sketch Understanding 
sKEA, the sketching Knowledge Entry Associate, is the first 
open-domain sketch understanding system (Forbus et al. 
2004).  Most sketch understanding systems are limited to a 
narrow domain and require extensive per-user training.  
sKEA works differently, by splitting the perceptual load 
with the user.  Users manually segment a sketch into glyphs, 

pieces of digital ink that represent the different objects in 
the sketch.  Users can label each glyph with one or more 
conceptual categories from sKEA’s knowledge base.  sKEA 
automatically computes various qualitative spatial relations 
between the glyphs in the sketch, including relative position 
& size, and the RCC8 set of topological relations (Cohn 
1996). Sketches can be segmented into layers.  Relations are 
only automatically computed between glyphs on the same 
layer.  sKEA combines the conceptual knowledge provided 
by the user with the automatically computed spatial 
knowledge to produce a qualitative, structural representation 
of a sketch. 

In cases where complex, precise spatial arrangements are 
required, drawing by hand can be too difficult.  Moreover, 
certain types of figures simply cannot be sketched. For 
example, consider the solid black squares in Figure 1.  
While the four sides of a square can be sketched, there is no 
good way to sketch a solidly black object.  Consequently, 
we have added a second method for adding digital ink to 
sKEA. Users can copy lines and polygons drawn in 
Microsoft applications such as PowerPoint and paste them 
into sKEA.  sKEA interprets the Windows Metafile format, 
which consists of a set of draw commands, to create either 
lines or polygons in sKEA’s digital ink format.  

4. Spatial Representation 
One of our primarily goals is to develop a qualitative spatial 
representation scheme that is powerful and flexible enough 
to match human performance in a variety of spatial 
reasoning tasks, provided it is paired with an appropriate 
spatial reasoning system. We see each task as an 
opportunity to evaluate our current representation scheme 
and, when necessary, add additional terms to our spatial 
vocabulary to meet the needs of the task. In this section, we 
summarize the representation scheme used to solve the 
RPM problems. While most components had been used for 
previous tasks, we were required to add some new features 
to the representation scheme, most notably a texture 
component. In the future, we hope to show that these new 
features, rather than being solely required for this task, will 
play useful roles in performing other tasks. 

Because we are interested in explaining human 
performance, our spatial representation scheme is not 
simply an arbitrary collection of terms which have proven 
useful in reasoning tasks. Rather, the components are 
motivated by theories of human perception.  Psychological 
evidence supporting the components below is described 
when available. 

Basic Elements 
What objects should make up the basic elements in a 
representation of visual structure?  One possibility would be 
to create an entity for every edge in an image. However, 
Treisman and Patterson (1984) found evidence that humans 
detect closure at an early, pre-attentive stage in the visual 
pipeline, allowing them to quickly reason about triangles at 
the attentive level without, apparently, having to resort to 



analyzing the triangles’ individual edges.  Consequently, we 
use closed shapes as entities in our spatial representation.  
Edges that do not form a closed shape are treated as separate 
entities.  For example, a right triangle is represented as a 
single entity, while two edges forming a right angle are 
represented as two distinct entities. 

We also include two basic attributes of closed shapes: 
their fill color, for solidly colored shapes, and their outline 
color. Ordinarily, every shape will have an outline color; a 
solidly black square will also have the outline color black.  

Spatial Relations 
Our representation contains two basic positional relations 
between elements: left-of and above.  sKEA computes these 
relationships under certain conditions for pairs of glyphs 
that are disconnected and adjacent, i.e., there is no third 
glyph between them.  Adjacency is determined by using a 
Voronoi diagram (Forbus et al. 2003).  Positional relations 
are only asserted when one glyph is directly above or 
directly beside an adjacent glyph; mixtures of positional 
relations between a pair of glyphs are not allowed.   

When one object is spatially located within another, a 
different set of relationships must be applied. In studying 
participants’ memories for visual scenes in which a dot was 
located somewhere inside a circle, Huttenlocher et al. 
(1991) found that the memory contained two components. 
One was a quantitative component consisting of the dot’s 
actual location inside the circle. The second was a 
qualitative component which encoded which of the circle’s 
four quadrants the dot had been located in.  When asked to 
recreate the scenes, participants tended to allow their 
memory of the qualitative component to bias their memory 
of the exact location, moving the dot closer to the center of 
the quadrant in which it had been located.  We interpret 
Huttenlocher et al.’s results (1991) as indicating that closed 
shapes are capable of setting up a frame of reference.  This 
frame consists of x- and y-axes running through the center 
of the shape.  For simplicity, we currently assume that these 
axes align with the axes of the global reference frame, 
although this is not always true. When one visual object is 
located inside a closed shape, we first assert a topological 
relation stating that one glyph is inside the other. Then, the 
interior glyph’s position relative to the axes of the exterior 
glyph’s frame of reference is computed and encoded. 

Shape Comparison 
Clearly people are capable of distinguishing between 
different shapes based on detailed properties even when 
they are the same general type (e.g., two triangles).  So 
while we treat closed shapes as entities, properties of their 
edges are still used in comparisons.  People can compare 
novel complex shapes that are presented at different 
orientations.  For tasks like the RPM, detecting what 
differences (rotation, reflection, and/or scale change) there 
are between two instances of the same shape is crucial. 

Previous work on mental rotation provides valuable 
constraints.  Shepard and Metzler (1971) demonstrated that 

when participants were shown drawings of arbitrary shapes 
and asked to determine whether one shape was a rotation of 
the other, the time required to identify the shapes as 
identical was proportional to the angle between them. This 
result seems to suggest that shape representations are 
orientation-specific, and that participants cannot compare 
two shapes to determine whether they are the same without 
first rotating their representation of one of the shapes to 
align it with the other. However, in the many studies that 
followed the original (see Shepard and Cooper 1982, for an 
overview), one fairly consistent finding was that, whether 
the shapes being compared were 2D or 3D, the time 
required tended to be proportionate to the degrees of 
rotation along the shortest possible axis of rotation. How 
could participants know the shortest axis of rotation before 
they knew whether the shapes were the same? Shepard and 
Cooper (1982) suggested that, before mental rotating one of 
the representations, people identify corresponding parts on 
the two images and these corresponding parts guide the 
rotation.  If this is true, then people must have access to 
some orientation-invariant representation that can be used to 
identify corresponding parts.  

Thus, we propose that people use two representations for 
objects being compared, whether the objects are simple 
closed shapes or complex, three-dimensional structures. The 
first representation is a qualitative, rotation-invariant 
representation that describes how an object’s parts relate to 
each other. If the object is a closed, 2D shape, this 
representation describes the shape’s edges. It includes 
relations which specify the types of angles that exist 
between connected edges, as well as the relative lengths and 
orientations of the edges.   

When comparing two shapes, we claim that people begin 
by using a structure-mapping process to align the shapes’ 
qualitative representations, identifying the corresponding 
edges in each shape.  Once corresponding edges have been 
identified, people cannot immediately conclude that the 
shapes are the same. The qualitative representations are 
relatively sparse, lacking specific information about the 
length and orientation of each edge.  To determine that the 
shapes are identical, their quantitative representations must 
be compared. These representations are orientation-specific, 
so they cannot be compared without first mental rotating 
one of them to line up its edges with the corresponding 
edges in the other representation.  Because corresponding 
edges are known, people can quickly compare one pair of 
corresponding edges to determine the shortest axis of 
rotation between them.  They must then rotate all the other 
edges together along this axis, using some mental process 
that can take linear time. 

 
Implementation Our shape comparison process starts by 
decomposing the shape into its component edges by 
identifying significant discontinuities in the curvature of its 
outline. We then build a qualitative representation where 
each component edge becomes an entity. We compare the 
qualitative representations using SME. The correspondences 



for the mappings it finds are used to compute the 
quantitative difference. That is, we iterate over every pair of 
corresponding edges to ascertain whether the rotational 
difference between every pair is the same. This comparison 
process is an approximation of the mental rotation process 
described above, since we compare each pair of edges in 
isolation, rather than rotating the entire set of edges together 
over a common axis. When SME returns multiple mappings 
(representing multiple possible rotations between the 
shapes), we pick the shortest possible rotation.  

Our comparison process can detect reflections and scale 
changes as well as rotations.  We detect reflections over the 
x- or y-axis by reversing the order of edges in one of the 
representations, finding the corresponding edges, and 
checking whether a reflection over the appropriate axis 
would explain the orientation for every pair of 
corresponding edges. We also check whether one shape is 
longer or taller than the other along the x and y axes. This 
size comparison is facilitated by the previous orientation 
comparison because, if one shape has been rotated about 90 
or 270 degrees, we know to switch that shape’s x and y 
dimensions before comparing their sizes. 

 
Encoding  The choice of when to compare shapes and how 
to encode the results of that comparison is somewhat task-
specific.  Given an RPM problem, our system begins by 
comparing shapes across all figures in the problem, creating 
a shape equivalency class for each shape. Membership in 
this equivalence class is used as an attribute that is encoded 
for every member of that class.  For example, all rectangles 
in a sketched problem would be placed in the same shape 
class.  (The attribute used is arbitrary, having no meaning 
outside that problem.)  This enables objects to be aligned 
based on having similar shapes.   

Transformations (i.e., rotations, reflections, and scale 
changes) are computed when images are compared. In 
RPM, this includes comparing two entries in the matrix or 
an entry with a possible answer. When comparing two 
images, the system begins by iterating over all shape 
equivalency classes.  For each class, it selects the first 
instance of that class it finds and uses it as a reference 
shape. It compares all other instances of the class in both 
images to the reference shape to identify any 
transformations.  All transformations are included in the 
representation of the appropriate image as an attribute of 
that object.  This process is performed on edges which are 
stand-alone entities, as well as closed shapes. Firstly, all 
such edges are assigned to one of the following shape 
classes: CurvedEdge and StraightEdge. Then, one straight 
edge is chosen as a reference, and all other straight edges 
are compared to its orientation and length. 

Textures 
Several RPM problems require distinguishing textures, so 
we implemented a rudimentary representation of textures in 
our system. This is the least psychologically constrained 
component of our model.  Textures are detected by looking 

for parallel lines that are not part of a closed shape. When 
enough such lines are found, they are grouped together to 
form a texture patch.  The outline of a texture patch is the 
total area covered by the set of parallel lines. This outline is 
scrutinized to see if there is a closed shape whose outline 
matches it.  If such a shape is found, it is added to the 
texture patch to create a border for it; otherwise the patch is 
marked as a closed shape without a border.  Texture patches 
can play the same roles as any other closed shape in the 
spatial relationships described above.   

 
Encoding In RPM problems, there are cases where two 
shapes should align simply because they both possess a 
texture, and other cases where two shapes should align 
specifically because they possess the same texture, i.e., the 
lines that make up their textures are parallel. We captured 
these distinctions by including two attributes for any closed 
shape possessing a texture. The first is the TexturedObject 
attribute, assigned to all shapes with a texture.  The second 
attribute is a texture class attribute, similar to the shape class 
attribute described above. That is, for a given RPM 
problem, all shapes possessing textures with parallel lines 
are placed into a texture equivalency class and assigned an 
arbitrary texture name for that class. Thus, in a comparison 
between images, any two textured shapes will share at least 
one common attribute, but two shapes with the same texture 
will share two common attributes. 

5. The Two-Stage Mapping Process 
We use a variation of the two-stage mapping process from 
(Tomai et al. 2005) to solve RPM problems.  We first 
describe the process for 2x2 problems and then show how it 
is generalized to solve the more complex 3x3 problems. 

Solving 2x2 Matrices 
Recall that geometric analogy problems take the form A : B 
:: C : ?. This form can easily be applied to a 2x2 Raven’s 
matrix by focusing on either the rows or columns. For 
example, consider the columns in the 2x2 matrix in Figure 
1. We could solve the problem posed by this matrix by 
asking “The top-left entry is to the bottom-left entry as the 
top-right entry is to _?”.  By posing the question in this way, 
we are ignoring some of the information provided in the 
matrix, specifically the relationship between the two entries 
in the top row. However, one of our key insights about both 
the 2x2 matrix problems and the 3x3 matrix problems is that 
they include a great deal of redundant information. Much of 
the time, these problems can be solved while ignoring some, 
or even most of the information provided in the matrices. 

Our strategy is to run two stages of comparisons (see 
Figure 2). The first stage compares individual entries in the 
matrix. SME is used to compare the top-left and bottom-left 
entries in the matrix.  Its mapping contains candidate 
inferences for expressions in the base that fail to align with  
the target and reverse candidate inferences for expressions
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Figure 2: The Two-Stage Structure-Mapping process, using rows to solve a problem 

in the target that fail to align with the base. In the current 
example, it produces one candidate inference saying that the 
dot is in the upper half of the square and one reverse 
candidate inference saying that the dot is in the lower half of 
the square. These inferences are used to construct a new 
representation, a representation of the differences between 
the two entries in the sketch. We refer to sets of differences 
as ∆(e1,e2), where e1, e2 are matrix entries or possible 
answers. Similarly, we use SME to compare the upper-right 
entry in the matrix to each of the six possible answers. Each 
of these comparisons also produces a ∆. 

The second stage mapping process uses SME to compare 
the ∆s found in the first stage. Thus ∆(upper-left, lower-left) 
is compared to the ∆(upper-right, answer) for each of the 
six possible answers. The correct answer should be the one 
whose ∆ is most similar to ∆(upper-left, lower-left). 

Scoring the similarity of ∆s requires taking into account 
both those elements that align and those that fail to align. In 
our example, the correct answer would be a square with a 
dot located in its bottom right corner. Thus, both the ∆s 
would involve a dot being in the upper half of the square 
versus the lower half. An answer that contained additional 
differences, e.g. where the dot also differed in its size or 
shape, would be less correct. An answer that contained 
fewer differences, such as the dot being in the same 
location, would also be less correct. Consequently, we 
measure similarity by calculating both the percentage of 
expressions in the base case (the differences between two 

matrix entries) that align with the target case and the 
percentage of expressions in the target case (the differences 
between a matrix entry and a possible answer) that align 
with the base case. We use the average of these two 
percentages as our similarity measure.  

The entire process described above can also be computed 
based on the rows of the matrix. Because of redundancy, 
scoring the answers based on either rows or columns is 
usually sufficient. However, to ensure maximum accuracy, 
the system picks an answer based on the average of the 
scores computed based on rows and columns. 

Solving 3x3 Matrices 
It may initially seem that the two-stage mapping process 
described above is insufficient for solving 3x3 matrices. 
After all, the 3x3 matrices involve understanding a row of 
three entries, so a system based on comparing only pairs of 
entries should be unable to solve it. However, as noted 
above, Raven’s matrices contain a high degree of 
redundancy. We have found that 3x3 problems can be 
solved by the same two-stage mapping process. 

 We solve 3x3 matrices by dividing them into four 
separate geometric analogy problems. As before, each of 
these problems involves finding differences between two 
matrix entries and comparing them to the differences 
between one matrix entry and each of the possible answers. 
The problems can be formulated as follows: 

 



1) Row: middle : middle-right :: bottom-middle : ? 
2) Column: middle : bottom-middle :: middle-right : ?  
3) Row-Progressive: bottom-left : bottom-middle :: 
bottom-middle : ? 
4) Column-Progressive: top-right : middle-right :: middle-
right : ? 
 

The first two questions are identical to the two used in the 
2x2 matrix. That is, they ignore the first entry in their 
respective rows or columns and consider only the 
transformation between the second and third entries. The 
last two questions focus on a single row or column. They 
look at the change between the first and second entries and 
compare that to the changes between the second entry and 
the eight possible answers. 

We have concluded that all of the problems in section C 
of the RPM can be solved by asking one of the four 
questions given above. Many of them can be solved by 
asking more than one. For example, our example 3x3 matrix 
in Figure 1 could actually be solved by asking any of these 
questions. However, most problems are not quite as easy as 
this one. Often, the correct answer will actually receive a 
poor score using the Row-Progressive and Column-
Progressive questions. Therefore, it does not make sense to 
score each answer based on its average score across the 
four. Instead, we take the maximum score across the 
questions, assuming that the correct answer should receive a 
perfect or near-perfect score on at least one of the questions. 

6. Performance on the SPM 
Because the problems in the Standard Progressive Matrices 
are precisely rendered, we drew the figures in PowerPoint 
and pasted them into sKEA. The figures in each entry of the 
matrices were pasted into separate layers, and the layers 
were named so that sKEA could easily retrieve the set of 
glyphs and relations for each entry in the matrix. Each 
answer was also given its own layer. 

We followed the normal sKEA strategy of relying on the 
user to segment a sketch into shapes. Each of the closed 
shapes was drawn in PowerPoint as a separate polygon. 
Lines that were not part of a closed shape were each drawn 
separately. Thus, when they were pasted into sKEA, they 
had already been segmented into the appropriate entities. 
sKEA was still required to segment the closed shapes into 
edges, so that they could be compared to the other shapes, 
but because PowerPoint had been used to draw perfectly 
straight lines, this task was relatively easy. sKEA’s only 
other task before building its representations was to group 
parallel lines together to form textured closed shapes.  

Note that we do not consider the problem of segmenting a 
scene into objects to be a trivial part of visual processing. In 
fact, we have previously explored automatic methods for 
decomposing the ink in a single glyph into edges and closed 
shapes (Lovett et al. 2007). However, for the present study, 
we are focusing on other perception problems. 

Results 
Our system was tested on the 12 problems in section B and 
12 problems in section C of the SPM. Chance performance 
would be 2 correct answers in section B and 1.5 correct 
answers in section C. Our system correctly answered all 12 
problems in section B, and 10 out of 12 problems in section 
C.  Using the norms available on the SPM, we can compare 
our system’s performance to human test-takers. According 
to the 1979 norms found in Table SPM2 (Raven et al., 
2000), subjects who scored a perfect score on section B 
generally scored 52 or higher on the overall test (out of a 
total score of 60).  Subjects who scored a 10 on section C 
generally scored between 49 and 52.  This suggests that, 
within those sections, our system is performing at the level 
of test-takers who scored around 52 on the overall test, 
though we are not claiming our system could score as high 
on the other sections. According to tables SPM 9 and SPM 
10 (Raven et al., 2000), a score of 52 is in the 50th percentile 
for individuals from the United States between the ages of 
18 and 45. Thus, our system’s performance on sections B 
and C appears to match the performance of the average 
American adult. 

Discussion 
While our system’s performance was similar to the 
performance of typical adults on the SPM, the two problems 
that it missed were not the most difficult problems in section 
C, by human standards. The problems were from the middle 
third of the section, whereas the test is designed to steadily 
increase in difficulty throughout each section (Raven et al., 
2000). Thus, we believe the mistakes made by the system 
are based on limitations in our spatial representation 
scheme. By considering the cause of these mistakes, we can 
gain insights into how the representation scheme can be 
improved to better model human perception. 

The first mistake involves a single closed shape that 
differs in number of parts between entries.  Unfortunately, 
our current shape comparison algorithm does not handle 
partial shape matches: it only identifies shapes with the 
exact same number of edges at approximately the same 
relative orientations. In the future we plan to use a more 
forgiving comparison algorithm, which can align some of 
the edges in two shapes and, based on that alignment, 
identify differences such as the addition or removal of other 
edges. The other mistake involves textures; here, the general 
TexturedObject attribute playes a part in misleading the 
system into choosing the incorrect answer. This result 
indicates that the system’s simplified texture component 
needs to be refined. 

7. Related Work 
Ferguson’s (Ferguson and Forbus 1999) GeoRep 
constructed qualitative representations of line drawings. As 
with our own system, these representations could be used to 
compare two drawings; they were also used to compare a 
drawing to itself to look for symmetry. Museros and Escrig 
(2004) built a system that made qualitative representations 



for closed shapes and could be used to compare two such 
shapes. We believe our system is the first to combine shape 
comparison with comparing full drawings to solve a 
complex task. 

Other current models of analogical matching include 
Mitchell’s (1993) Copycat program and French’s (1995) 
TableTop. However, these systems were designed primarily 
to work in a single domain, letter-strings for Copycat and 
table settings for TableTop. SME, in contrast, works on a 
general vocabulary that allows it to be used in variety of 
different domains (Forbus et al. 1997). LISA (Hummel & 
Holoyak 1997) is a general model of analogy, but to our 
knowledge it has not been used with automatically 
generated representations, and could not process 
representations of the size needed to handle this task. 

8. Conclusion 
This simulation provides evidence for two important points.  
First, it demonstrates that our spatial representation scheme 
encodes sufficient information for solving 22 out of 24 SPM 
problems that constitute two sections of the entire exam.  
This, along with independent evidence motivating them, 
suggests that our representations capture some important 
properties of human visual representations.  Most aspects of 
these representations have been used in prior simulations 
(e.g., Tomai et al. 2005), with only two (frames of 
references inside objects and texture patches) added for this 
simulation. While further development is needed, especially 
in texture patches, this result suggests that the 
representations are on the right track.  Second, we have 
shown that SME, in a two-stage mapping process, can be 
used to solve easy to mid-level SPM problems. No special-
purpose mechanisms are required, lending support to the 
claim that SME models general processes of structural 
alignment in human cognition.   

While our simulation overcomes the three limitations of 
the Carpenter et al (1990) model, it has a complementary 
limitation: it is not clear that our model can explain the 
strategies used by more skilled individuals on more 
advanced problems. Modeling performance on the advanced 
problems would have the dual advantages of demonstrating 
the generalizability of our model and allowing us to 
determine whether the model can accurately predict human 
errors, since humans make considerably more mistakes on 
these problems. We believe it may be possible to 
approximate the task-specific problem-solving strategies 
laid out by Carpenter using general analogical processes, 
although additional comparisons and mapping stages will be 
needed to deal with the more abstract spatial relationships. 
In the future, we plan to test out this approach. 
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